
Similarities Between Co-evolution and Learning
Classifier Systems and Their Applications

Ramón Alfonso Palacios-Durazo1 and Manuel Valenzuela-Rendón2

1 Lumina Software,
apd@luminasoftware.com,

http://www.luminasoftware.com/apd
Washington 2825 Pte C.P. 64040,

Monterrey N.L., Mexico
2 Centro de Sistemas Inteligentes,

Instituto Tecnológico y de Estudios Superiores de Monterrey,
valenzuela@itesm.mx,

http://www-csi.mty.itesm.mx/˜mvalenzu
Sucursal de Correos J, C.P. 64849

Monterrey, N.L., Mexico

Abstract. This article describes the similarities between learning clas-
sifier systems (LCSs) and coevolutionary algorithm, and exploits these
similarities by taking ideas used by LCSs to design a non-generational
coevolutionary algorithm that incrementally estimates fitness of indi-
viduals. The algorithm solves some of the problems known to exist in
coevolutionary algorithms: it does not loose gradient and is successful in
generating an arms race. It is tested on MAX 3-SAT problems, and com-
pared to a generational coevolutionary algorithm and a simple genetic
algorithm.

1 Introduction

Coevolution refers to the simultaneous evolution of two or more genetically di-
stinct species. This evolution may be such that the species cooperate or compete.
The application of competitive coevolution to problem solving has been of in-
terest in the genetic algorithm research community because competition, in its
most general sense, encourages the generation of better competitors. The imple-
mentation of this idea, in the form of a competition between possible solutions
and instances of a problem, has been reported with varying degrees of success:
Hillis [5] used a coevolutionary approach to find sorting nets for sorting arrays
of 16 elements. He implemented a coevolutionary algorithm where sorting nets
competed against permutations (each permutation is an instance of a sorting
problem). Pollack and Rosin [8,10] generated playing strategies for games, Ficici
[4] used a coevolutionary algorithm for generating predictors and Cliff [3] for
evolving persecution and evasion strategies. Many other applications have been
reported.

In the competitive coevolutionary approach to problem solving, the indivi-
duals in two populations are made to compete to determine their fitness. The

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 561–572, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

562 R.A. Palacios-Durazo and M. Valenzuela-Rendón

fitness of an individual depends on its performance against opponents in the cur-
rent generation of the competing population [9]. Since the competition is similar
to the relationship between predator and prey, or parasites and their hosts, the
populations in a coevolutionary algorithm are usually named as such. For the
purpose of this article, hosts will refer to a population of possible solutions, and
parasites will refer to a population of instances of or parts of a problem.

The central idea of coevolution lies in the fact that the fitness of an indivi-
dual depends on its performance against the current individuals of the opponent
population. This is the competition that we hope will generate better soluti-
ons. However, this simple idea gives rise to not-so-simple implications: the most
simple form of coevolution is inherently unstable, costly in computer effort, and
holds no guarantee it will work [12,9,4].

Unnoticed by most researchers are the similarities between coevolutionary
algorithms (CEAs) and learning classifier systems (LCSs). The purpose of this
article is to highlight these similarities, to address the issue of loss of gradient,
and to introduce a new paradigm in CEAs based on the way LCSs work: incre-
mentally adjusting fitness of individuals in a non-generational genetic algorithm.
We devised a CEA based on these premises and test and compare it with a simple
generational CEA and a simple genetic algorithm (SGA).

The remainder of the article is organized as follows: Section 2 defines a simple
CEA and describes goals and obstacles CEAs face. Section 3 derives the incre-
mental and non-generational algorithm. Section 4 describes the experimentation
and results and Section 5 concludes this article.

2 Goals and Challenges of Coevolutionary Algorithms

In its most simple form, coevolution is implemented in the manner shown in
Figure 1 in an algorithm we will call the simple coevolutionary algorithm (SCA).

Variations of the SCA are used by researchers [8,4], mostly by changing
the form of the competition. The manner in which a competition is performed
depends on the application as well as how the “winner” is determined. Some
applications may not have an absolute winner, more likely a degree of winning,
or a score. The way the fitness of an individual is calculated is also application
dependant. The number of wins may be substituted by a sum of scores or other
appropriate measures of performance.

Likewise, the opponents chosen for competition are not necessarily the com-
plete population. Many researches use a subset of the opponent population for
purposes of fitness calculation, either randomly or specifically selected. The SCA,
and the variations found to be used by researchers encourage the selection and
reproduction of individuals that perform well against the fitness landscape re-
presented by the opponent population.

Watson and Pollak[12] clearly stated three interesting and useful goals and
potential pitfalls for a coevolutionary algorithm:

– Providing a “hittable” target (gradient). The individuals in both populations
should be relatively of the same quality and should improve roughly at the

Similarities Between Co-evolution and Learning Classifier Systems 563

(*Initialize populations*)
Generate random host population
Generate random parasite population

(* Main cycle*)
repeat

(* Competition cycle*)
for-each p ∈ parasites

for-each h ∈ hosts
h and p compete

end-for
end-for
Fitness of parasites and hosts calculated

based on competitions won

One generation of a GA is applied to hosts
selection, crossover, and mutation

One generation of a GA is applied to parasites
selection, crossover, and mutation

until termination criteria met

Fig. 1. The simple coevolutionary algorithm

same rate. If one population outperforms the other drastically, the latter will
have no opportunity to learn and improve.

– Providing a relevant target (focusing). The opponents must represent so-
mething worth beating. Different strengths and weaknesses should emerge.
These strengths are also known as specialization niches and have been de-
scribed by Rosin and Belew [10].

– Providing a progressive moving target (open-endedness). The gradual im-
provement of both populations should be such that individuals progress. It
is possible for individuals to “forget” strengths and fall into what is known
as a mediocre stable state [1].

Methods and techniques have been proposed to compensate the challenges
faced by CEAs [9], mostly trying to solve each known problem one at a time.

3 An Incremental and Non-generational Coevolutionary
Algorithm

In this article we take lessons learned from the field of learning classifier systems
to propose a different approach to implementing coevolution that we call the
incremental coevolutionary algorithm (ICA).

564 R.A. Palacios-Durazo and M. Valenzuela-Rendón

In ICA, the importance of the coexistence of individuals in the same popula-
tion is as great as the individuals in the opponent population. This is similar to
the problem faced by learning classifier systems (LCSs) [6] and multiobjective
optimization as done by Valenzuela-Rendón and Uresti-Charre [11]. We take
ideas from these algorithms and put them into the ICA. A non-generational ge-
netic algorithm is used and an incremental approach is taken to estimate the
fitness of an individual. With this new design, we are able to avoid some of the
pitfalls faced by other CEAs.

The motivation to use ideas from LCSs comes from the similarity between
the challenges LCSs and CEAs face:

– The performance of the algorithm depends on the coexistence of individuals
in the population.

– A generational algorithm in which each new generation is composed of new
individuals is very disruptive.

– There is a need both to explore and to remember.

In a simple genetic algorithm, the objective is to find the individual that
has the best possible fitness as defined by the objective function. In a CEA, the
fitness landscape depends on the opponent population, therefore it changes over
time (every generation, in fact). The evolution of hosts depends on the existence
of parasites. The fitness landscape presented by the parasites determines how
the population of hosts is formed. Likewise, the population of parasites depends
on the fitness landscape of the population of hosts. The individuals selected
for reproduction are those more promising to perform better against the fitness
landscape represented by the opponent population. However, if the complete
population of parasites and hosts are recreated in every generation, the offspring
of each new generation face a fitness landscape unlike the one they where bred
to defeat. Clearly, a purely generational approach to coevolution can be too
disruptive.

As the fitness landscape presented by the opponent population gradually
changes, so does the value of an individual. Instead of calculating or estimating
the fitness based on competitions against the current opponents, it makes more
sense to incrementally adjust the fitness of an individual as it faces each new
generation of opponents.

These two ideas define the main approach of the ICA: the use of a non-
generational genetic algorithm and the incremental adjustment of the fitness
estimation of an individual. The general design of the ICA is presented in Fi-
gure 2.

The manner in which the fitness of host and parasite are adjusted must be
designed to insure that the fitness of parasites and hosts behave as desired, and
can be done in a manner very similar to the adjustment of strengths of classifiers
in an LCS.

If we call the result of a competition a score, and hosts are set to minimize
the score, and parasites are set to maximize it, then the general equation for
adjusting the fitness of a parasite should include an increment proportional to
the score, but should also include some form of fitness reduction so the value
does not grow indefinitely. Therefore, the fitness of a parasite (Sp) at a time

Similarities Between Co-evolution and Learning Classifier Systems 565

(*Initialize populations*)
Generate random host population
Generate random parasite population

(* Main cycle*)
repeat

(* Competition cycle*)
for c← 1 to determined number of cycles

p← parasite selected proportionally to fitness
h← host selected proportionally to fitness
h and p compete, their fitness is adjusted

incrementally, depending on the score
end-for c

(* 1 step of a GA in the parasite population*)
Select parasite parents proportionally to fitness
Create parasite by doing crossover

and mutation
Delete parasite with worst fitness and

substitute with new parasite

(* 1 step of a GA in the host population*)
Select host parents proportionally to fitness
Create host by doing crossover

and mutation
Delete host with worst fitness and

substitute with new host

until termination criteria met

Fig. 2. General form of the incremental coevolutionary algorithm

t + 1 depends on the fitness at time t, plus some form of reward for obtaining
the score, minus a cost or taxation for competing:

Sp(t + 1) = Sp(t) + Reward − Taxation (1)

The reward should be in some way proportional to the score and the term for
taxation is defined as a portion of an individuals fitness, similar to the manner
done by LCSs:

Reward = C1(score) (2)

Taxation = C2Sp(t) (3)

The value of the score should be limited in magnitude to avoid unstable
behavior. We define a function A(score) that will limit the values of score that
can be used in equation 2. We use tanh(x), because tanh(0) = 0 and it grows

566 R.A. Palacios-Durazo and M. Valenzuela-Rendón

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A(error,f)=tanh(x/f)

error

f=0.5
f=5
f=25
f=10

Fig. 3. Effect of the scaling factor

asymptotically to 1. Furthermore, it is possible to change the scale of tanh(x)
adding a scaling factor h:

A(score, h) = tanh
(score

h

)
(4)

The effect of the scaling factor can be seen in Figure 3. Equation 1 can now be
fully written as:

Sp(t + 1) = Sp(t) + C1A(score, H) − C2Sp(t) (5)

which can be rewritten as:

Sp(t + 1) = (1 − C2)Sp(t) + C1A(score, h) (6)

The equation for adjusting the fitness of a host is very similar.

Sh(t + 1) = Sh(t) + Reward − Taxation (7)

Taxation is also defined in a similar manner to parasites and the host’s reward
should be inversely related to the score:

Reward = C3(1 − A(score, h)) (8)

Taxation = C4Sh(t) (9)

The complete equation for adjusting the fitness of a host is:

Sh(t + 1) = Sh(t) + C3(1 − A(score, h)) − C4Sh(t) (10)

also expressed as:

Sh(t + 1) = (1 − C4)Sh(t) + C3(1 − A(score, h)) (11)

Similarities Between Co-evolution and Learning Classifier Systems 567

Do these equations accomplish what is wanted? A simple steady state analysis
can show they do. When the algorithm stabilizes, the fitness of an individual
should not change, therefore making S(t+1) = S(t) for both hosts and parasites
in equations 6 and 11. Doing trivial algebraic manipulation, we have that

Sp =
C1

C2
A(score, h) (12)

and

Sh =
C3

C4
(1 − A(score, h)) (13)

The fitness of parasites that cause low values of score will tend to 0, but
parasites that cause high values of score will tend to C1/C2. Likewise, hosts that
have high values of score will tend to 0, but hosts that have low score will tend to
C3/C4. We can make C1 = C2 = α and C3 = C4 = β for formula simplification:

Sp(t + 1) = (1 − α)Sp(t) + αA(score, h) (14)

Sh(t + 1) = (1 − β)Sh(t) + β(1 − A(score, h)) (15)

The equations will make the fitness of hosts and parasites behave as desired.
Two final modifications make the ICA work better: each parasite and host

is initialized with a fitness equal to 1. This makes each individual start with
a perfect fitness (which is obviously not true). This has the effect distributing
the initial competitions evenly among the first generation. Second, each new
individual is given a fitness equal to the average of the fitness of its parents.
This is considered an initial estimate of the fitness of the new individual.

The ICA has some interesting properties. First of all, it is not generatio-
nal. Each new individual faces a similar fitness landscape than its parents. The
fitness landscape changes gradually, allowing an arms race to occur, avoiding
loss of gradient. Second, each population works as a memory, deterring a fall
into a mediocre stable state. Third, the fitness landscape each population sees
is somewhat distorted in an interesting way: the actual score is modified by the
function A(score, h), but also, since opponents are chosen proportional to their
fitness, an individual has a greater chance of facing good opponents. If a particu-
lar strength is found in a population, individuals that have it will propagate and
will have a greater probability of coming into competition (both because more
individuals carry the strength, and because a greater fitness produces a higher
probability of being selected for competition). If the population overspecializes,
another strength will propagate to maintain balance. Thus, a natural sharing
occurs. The formal definition of the ICA can be seen in Figure 4 with the list of
parameters defined in Table 1.

The ICA was tested on three different MAX 3-SAT problems, and its per-
formance compared to that of a generational coevolutionary algorithm and a
simple genetic algorithm.

568 R.A. Palacios-Durazo and M. Valenzuela-Rendón

(*Define A(x,h)*)
A(x, h)← tanh(x/h)

(*Initialize populations*)
Generate random host population
Generate random parasite population

(* Initialize fitness*)
for-each p ∈ parasites

Sp ← 1
for-each h ∈ hosts

Sh ← 1

(* Main cycle*)
repeat

(* Competition cycle*)
for c← 1 to Nc

p← parasite selected proportionally to Sp

h← host selected proportionally to Sh

score← competition between h and p
Sp ← (1− α)Sp + αA(score, h)
Sh ← (1− β)Sh + β(1−A(score, h))

end-for c

(* 1 step of a GA in the parasite population*)
Select parasite parents (p1 and p2) proportionally to Sp

Create parasite p0 crossover and mutation
Sp0 ← (Sp1 + Sp2)/2
Delete parasite with worst fitness and substitute with p0

(* 1 step of a GA in the host population*)
Select host parents (h1 and h2) proportionally to Sh

Create host h0 by crossover and mutation
Sh0 ← (Sh1 + Sh2)/2
Delete host with worst fitness and substitute with h0

until termination criteria met

Fig. 4. Incremental coevolutionary algorithm

4 Experimentation and Results

The ICA was run five times on each of three 3-SAT benchmark problems from
SATLIB[7] (a total of fifteen times). All three problems have 960 clauses and
225 variables and have solutions. The problems are considered hard due to phase
transition as described by Cheeseman, Kanefsky, and Taylor [2].

The hosts were coded as a direct variable instantiation (1 bit per variable).
The parasites consisted of 5 segment chromosome, each segment representing one

Similarities Between Co-evolution and Learning Classifier Systems 569

Table 1. Incremental coevolutionary algorithm parameters

Parameter Description
h Score scaling factor.
α Maximum increment ratio in host

fitness.
β Maximum increment ratio in para-

site fitness.
Nc Number of competitions between

each step of the GA.
Pcp Crossover probability of the para-

site population.
Pmp Mutation probability of the para-

site population.
Tp Parasite population size.
Pca Crossover probability of the host

population.
Pma Mutation probability of the host

population.
Ta Host population size.

of the 225 variables. The score of the competition between hosts and parasites
was the percentage of clauses that contained any one of the variables represented
by the parasite that were solved by the variable instantiation represented by the
host.

The same representation and competition was used in a generational ap-
proach to coevolution. En each step of the generational coevolutionary algorithm,
each host was made to compete with each parasite. Fitness was calculated as the
percentage of clauses solved by each host (and the reciprocal for the parasite).

Finally, the same number of tests were applied to a simple genetic algorithm.
In this case, the fitness of each individual was directly the number of clauses
solved. A few pilot runs were done with each algorithm to help determine the
best configuration. The parameters used in all three algorithms can be seen in
Tables 2, 3, and 4.

Figure 5 shows the results of these experiments. The graph shows the average
and standard deviation of the best solution found for all problems. For both
coevolutionary algorithms, at each generation step, the individual with best
fitness was evaluated to determine how many clauses of the complete 3-SAT
problem it solved. It is possible that a better solution existed in the population,
but only the best host was evaluated.

It can be seen than the ICA was able to find better solutions and maintain
progress. The gradual change provided by the non-generational nature of the
algorithm, as well as the incremental adjustment of fitness allows a gradient to
be maintained. In contrast, the generational CEA was unable to provide such an
environment, so no progress occurs. It can be seen that very few competitions
are required between steps of the genetic algorithm in the ICA. Computational
effort is saved by using these competitions with good individuals.

570 R.A. Palacios-Durazo and M. Valenzuela-Rendón

0 1 2 3 4 5 6 7 8

x 10
8

800

820

840

860

880

900

920

940

960

Total clauses tested

N
um

be
r

of
 c

la
us

es
 s

ol
ve

d
by

 b
es

t i
nd

iv
id

ua
l f

ou
nd

Comparison of ICA, Generational coevolutionary algorithm and SGA

ICA
Generational coevolutionary algorithm
SGA

Fig. 5. Results of experimentation

Table 2. The ICA parameters

Parameter Value
α 0.01
β 0.01
Nc 25
Ta 500
Pca 0.95
Pma 0.05
Tp 100
Pcp 0.65
Pmp 0.1
h 1

5 Conclusions

CEAs and LCSs have important similarities that have been unnoticed. A succes-
sful CEA can be designed following the guidelines of LCSs. The gradual change
provided by a non-generational algorithm with incremental adjustment to fitness
estimation provide an environment where a true competition can occur, with the
desired benefits.

The incremental coevolutionary algorithm is quite robust, it does not fall
into a stable mediocre state, it generates a successful arms race and niche spe-
cialization. It is simple and elegant and solves some of the problems known to
happen in coevolutionary algorithms.

Similarities Between Co-evolution and Learning Classifier Systems 571

Table 3. Generational CEA parameters

Parameter Value
Ta 500
Pca 0.95
Pma 0.05
Tp 100
Pcp 0.95
Pmp 0.5

Selection mechanism Tournament (size 2)

Table 4. SGA parameters

Parameter Value
Population size 500

Pc 0.9
Pm 0.05

Selection mechanism Tournament (size 2)

References

1. Peter J. Angeline and Jordan B. Pollack. Competitive environments evolve better
solutions for complex tasks. In Proceedings of the 5th International Conference on
Genetic Algorithms, pages 264–270, 1994.

2. Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard
problems are. In Proceedings of the Twelfth International Joint Conference on
Artificial Intelligence, IJCAI-91, Sidney, Australia, pages 331–337, 1991.

3. Dave Cliff and Geoffrey F. Miller. Tracking the red queen: Measurements of adap-
tive progress in co-evolutionary simulations. In European Conference on Artificial
Life, pages 200–218, 1995.

4. Sevan G. Ficici and Jordan B. Pollack. Challenges in coevolutionary learning:
Arms-race dynamics, open-endedness, and mediocre stable states. In Christoph
Adami, Richard K. Belew, Hiroaki Kitano, and Charles Taylor, editors, Artificial
Life VI: Proceedings of the Sixth International Conference on Artificial Life, pages
238–247, Cambridge, MA, 1998. The MIT Press.

5. W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an opti-
mization procedure. In Christopher G. Langton, Charles Taylor, J. Doyne Far-
mer, and Steen Rasmussen, editors, Artificial Life II, volume X, pages 313–324.
Addison-Wesley, Santa Fe Institute, NM, 1992.

6. John Holland. Escaping brittleness: The possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. Machine Learning: An Artificial
Intelligence Approach, 2, 1986.

7. Holgar H. Hoos and Thomas Stützle. Satisfiability library. http://www.satlib.org,
May 2001. Version 1.4.4.

8. Jordan B. Pollack, Alan D. Blair, and Mark Land. Coevolution of a backgammon
player. In C. G. Langton, editor, Proceedings of Artificial Life V, Cambridge, MA,
1996. MIT Press.

9. Christopher D. Rosin. Coevolutionary search among adversaries. PhD thesis,
University of California, San Diego, San Diego, CA, 1997.

572 R.A. Palacios-Durazo and M. Valenzuela-Rendón

10. Christopher D. Rosin and Richard K. Belew. Methods for competitive co-evolution:
Finding opponents worth beating. In Larry Eshelman, editor, Proceedings of the
Sixth International Conference on Genetic Algorithms, pages 373–380, San Fran-
cisco, CA, 1995. Morgan Kaufmann.

11. Manuel Valenzuela-Rendón and Eduardo Uresti-Charre. A non generational gene-
tic algorithm for multiobjective optimization. In Proceedings of the Seventh Inter-
national Conference on Genetic Algorithms, pages 658–665. Morgan Kaufmann,
1997.

12. Richard A. Watson and Jordan B. Pollack. Coevolutionary dynamics in a minimal
substrate. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 702–709, San Francisco, California, USA, 7-11 2001. Morgan
Kaufmann.

	Introduction
	Goals and Challenges of Coevolutionary Algorithms
	An Incremental and Non-generational Coevolutionary Algorithm
	Experimentation and Results
	Conclusions

